Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,6-Dimethyl-1-phenyl-1H,4H-pyrano-[2,3-c]pyrazol-4-one

Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Salem A. Hameed,^a Seik Weng Ng^{c,a} and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 13 March 2012; accepted 15 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.158; data-to-parameter ratio = 16.2.

The title compound, C₁₄H₁₂N₂O₂, is almost planar with an r.m.s. deviation for all non-H atoms of 0.038 Å. The observed planarity is rationalized in terms of a close intramolecular C- $H \cdots O$ interaction. Supramolecular layers, two molecules thick and with a step topology, are formed in the crystal packing via C-H...O contacts involving the carbonyl O atom, which accepts two such bonds, and $\pi - \pi$ interactions between the components of the fused ring system and the phenyl ring of inversion-related molecules [centroid-centroid distances = 3.6819 (13) and 3.6759 (12) Å].

Related literature

For the analgesic and anti-inflammatory activities of pyrano[2,3-c]pyrazole derivatives, see: Kuo et al. (1984). For the synthesis, see: Gelin et al. (1983).

Crystal data C14H12N2O2 $M_r = 240.26$

Triclinic, $P\overline{1}$ a = 6.7200 (6) Å

$\alpha = 93.914 \ (6)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 95.162 \ (6)^{\circ}$	T = 100 K
$\gamma = 108.721 \ (8)^{\circ}$	$0.40 \times 0.30 \times 0.20 \text{ mm}$
$V = 583.66 (9) \text{ Å}^3$	
Data collection	
Agilent SuperNova Dual	4356 measured reflections
diffractometer with an Atlas	2676 independent reflections
detector	1946 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.031$
(CrysAlis PRO; Agilent, 2011)	

$R[F^2 > 2\sigma(F^2)] = 0.056$	165 parameters
$wR(F^2) = 0.158$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
2676 reflections	$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Z = 2Mo $K\alpha$ radiation

 $2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

b = 8.2201 (8) Å

c = 11.2616 (7) Å

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots O1$ $C3-H3\cdots O2^{i}$ $C8-H8C\cdots O2^{ii}$	0.95	2.33	2.970 (2)	124
	0.95	2.47	3.400 (3)	167
	0.98	2.54	3.472 (3)	158

Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 2, -y + 1, -z.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/ MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2391).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gelin, S., Chantegrel, B. & Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082. Kuo, S.-C., Huang, L.-J. & Nakamura, H. (1984). J. Med. Chem. 27, 539-544.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[‡] Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

supplementary materials

Acta Cryst. (2012). E68, o1120 [doi:10.1107/S1600536812011348]

3,6-Dimethyl-1-phenyl-1H,4H-pyrano[2,3-c]pyrazol-4-one

Abdullah M. Asiri, Hassan M. Faidallah, Salem A. Hameed, Seik Weng Ng and Edward R. T. Tiekink

Comment

It has been reported that many pyrano[2,3-*c*]pyrazole derivatives possess analgesic and anti-inflammatory activities (Kuo *et al.*, 1984). In this report, following literature precedents (Gelin *et al.*, 1983; Kuo *et al.*, 1984), the title compound was synthesized, and herein, its crystal and molecular structure are described.

In the title molecule, Fig.1, each of the pyrazole [r.m.s. deviation = 0.001 Å] and pyran-4-one [r.m.s. deviation = 0.006 Å] rings is planar and the dihedral angle between them is $0.82 (11)^{\circ}$. The planarity in the molecule extends to include the pendent phenyl ring, which makes a dihedral angle of $3.17 (11)^{\circ}$ with the pyrazole ring. The r.m.s. deviation for the 18 non-hydrogen atoms is 0.038 Å, with maximum deviations of 0.071 (2) Å for atoms C13 and C14, and -0.059 (2) Å for the C10 atom. An explanation for the co-planarity in the molecule is the presence of intramolecular C10—H···O1 and C14—H14···N2 interactions (Table 1).

In the crystal packing, the carbonyl-O2 atom is bifurcated, forming two C—H···O interactions (Table 1 and Fig. 2), leading to a supramolecular layer in the *bc* plane. Layers are connected into double layers by π — π interactions involving the phenyl ring interacting with both rings of the fused ring system [ring centroid···ring centroid distances = 3.6819 (13) Å, for the five- and six-membered rings, and 3.6759 (12) Å, for the interaction between the two six-membered rings; symmetry operation: -x+2, -y+1, -z+1]. The layers have a step topology and stack along the *a* axis with no specific intermolecular interactions between them (Fig. 3).

Experimental

Following literature precedents (Gelin *et al.*, 1983; Kuo *et al.*, 1984), dehydroacetic acid was converted to 4-acetoacetyl-3-methyl-1-phenyl-2-pyrazolin-5-one, which in turn yielded 3,6-dimethyl-1-phenyl-1*H*,3*aH*,4*H*,7*aH*-pyrano[2,3*c*]pyrazol-4-one when treated with concentrated sulfuric acid.

To a solution of dehydroacetic acid (10 mmol) in benzene (20 ml) was added the phenylhydrazine (10 mmol). The mixture was refluxed for 30 min and allowed to stand at room temperature for 2 h. After the mixture was cooled, the hydrazone was collected and recrystallized from ethanol. A solution of this product (10 mmol) in acetic acid (20 ml) was refluxed for 1 h. After evaporation of the solvent, the residue was recrystallized from ethanol as needles. To a solution of this (2.5 g, 0.01 mmol), *i.e.* 4-acetoacetyl-3-methyl-1-phenyl-2-pyrazolin-5-one, in acetic acid (20 ml) was added concentrated sulfuric acid (1 ml) drop wise. The mixture was poured into cold water (150 ml) and the resulting precipitate was filtered, washed with 5% aqueous Na₂CO₃ solution, water, dried and recrystallized from ethanol. Yield: 74%. *M*.pt: 426–427 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions and were treated as riding atoms: C—H = 0.95 and 0.98 Å for CH and CH₃ H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H atoms, and = 1.2 for other H atoms.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title molecule showing the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

A view of the supramolecular layer in the *bc* plane in the crystal structure of the title compound. The O—H···O and π — π interactions are shown as orange and purple dashed lines, respectively.

Figure 3

A view in projection down the *c* axis of the unit-cell contents of the title compound. The O—H···O and π — π interactions are shown as orange and purple dashed lines, respectively.

3,6-Dimethyl-1-phenyl-1*H*,4*H*-pyrano[2,3-c]pyrazol-4-one

Crystal data	
$C_{14}H_{12}N_2O_2$	$\gamma = 108.721 \ (8)^{\circ}$
$M_r = 240.26$	$V = 583.66 (9) \text{ Å}^3$
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 252
a = 6.7200 (6) Å	$D_{\rm x} = 1.367 {\rm ~Mg} {\rm ~m}^{-3}$
b = 8.2201 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 11.2616 (7) Å	Cell parameters from 1310 reflections
$\alpha = 93.914 \ (6)^{\circ}$	$\theta = 2.6 - 27.5^{\circ}$
$\beta = 95.162 \ (6)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$

T = 100 KPrism, orange

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.964, T_{\max} = 0.982$ 4356 measured reflections
Radiation source: SuperNova (Mo) X-ray Source	2676 independent reflections 1946 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.031$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ωscan	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -10 \rightarrow 9$
(CrysAlis PRO; Agilent, 2011)	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.158$	neighbouring sites
S = 1.05	H-atom parameters constrained
2676 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2 + 0.084P]$
165 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.38 \text{ e} \text{ Å}^{-3}$

 $0.40 \times 0.30 \times 0.20 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

				TT 4/TT	
	<i>x</i>	уу	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	
01	0.6182 (2)	0.25349 (16)	0.35598 (11)	0.0238 (3)	
O2	0.6446 (2)	0.28672 (19)	-0.00902 (12)	0.0349 (4)	
N1	0.7795 (2)	0.55863 (19)	0.37569 (13)	0.0216 (4)	
N2	0.8481 (3)	0.6876 (2)	0.30000 (14)	0.0257 (4)	
C1	0.4637 (3)	-0.0519 (3)	0.33142 (18)	0.0336 (5)	
H1A	0.4058	-0.1514	0.2706	0.050*	
H1B	0.3523	-0.0428	0.3793	0.050*	
H1C	0.5797	-0.0671	0.3838	0.050*	
C2	0.5447 (3)	0.1084 (2)	0.27152 (17)	0.0266 (4)	
C3	0.5520 (3)	0.1187 (3)	0.15402 (17)	0.0284 (5)	
H3	0.4976	0.0145	0.1020	0.034*	
C4	0.6380 (3)	0.2797 (3)	0.10026 (17)	0.0276 (5)	
C5	0.7110 (3)	0.4278 (2)	0.18953 (16)	0.0245 (4)	
C6	0.6979 (3)	0.4044 (2)	0.30916 (16)	0.0221 (4)	
C7	0.8072 (3)	0.6086 (3)	0.18951 (17)	0.0266 (4)	
C8	0.8643 (4)	0.7086 (3)	0.08486 (18)	0.0339 (5)	
H8A	0.9106	0.8324	0.1112	0.051*	
H8B	0.7406	0.6789	0.0243	0.051*	
H8C	0.9792	0.6801	0.0502	0.051*	
C9	0.8063 (3)	0.6061 (2)	0.50196 (16)	0.0221 (4)	
C10	0.7333 (3)	0.4863 (2)	0.58291 (17)	0.0262 (4)	
H10	0.6643	0.3678	0.5554	0.031*	
C11	0.7627 (3)	0.5423 (3)	0.70503 (17)	0.0261 (4)	

supplementary materials

H11	0.7132	0.4613	0.7609	0.031*	
C12	0.8638 (3)	0.7155 (3)	0.74549 (17)	0.0262 (4)	
H12	0.8826	0.7529	0.8287	0.031*	
C13	0.9367 (3)	0.8327 (3)	0.66445 (17)	0.0269 (4)	
H13	1.0062	0.9511	0.6922	0.032*	
C14	0.9096 (3)	0.7798 (2)	0.54306 (17)	0.0259 (4)	
H14	0.9611	0.8613	0.4878	0.031*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0281 (7)	0.0183 (7)	0.0214 (7)	0.0041 (5)	0.0027 (5)	-0.0041 (5)
O2	0.0417 (9)	0.0379 (9)	0.0209 (7)	0.0093 (7)	0.0037 (6)	-0.0068 (6)
N1	0.0251 (8)	0.0193 (8)	0.0177 (8)	0.0049 (6)	0.0014 (6)	-0.0039 (6)
N2	0.0310 (9)	0.0230 (8)	0.0214 (8)	0.0064 (7)	0.0042 (6)	0.0004 (7)
C1	0.0416 (13)	0.0218 (11)	0.0314 (11)	0.0035 (9)	0.0046 (9)	-0.0050 (9)
C2	0.0272 (10)	0.0194 (10)	0.0277 (10)	0.0035 (8)	0.0003 (8)	-0.0092 (8)
C3	0.0299 (11)	0.0264 (11)	0.0255 (10)	0.0075 (8)	0.0007 (8)	-0.0086 (8)
C4	0.0263 (10)	0.0290 (11)	0.0241 (10)	0.0074 (8)	-0.0002 (8)	-0.0073 (8)
C5	0.0253 (10)	0.0253 (10)	0.0214 (10)	0.0079 (8)	0.0019 (7)	-0.0033 (8)
C6	0.0213 (9)	0.0201 (9)	0.0232 (9)	0.0061 (7)	0.0014 (7)	-0.0036 (7)
C7	0.0280 (10)	0.0278 (10)	0.0227 (10)	0.0083 (8)	0.0037 (7)	-0.0023 (8)
C8	0.0439 (13)	0.0326 (12)	0.0229 (10)	0.0091 (10)	0.0066 (9)	0.0014 (9)
C9	0.0229 (9)	0.0237 (10)	0.0183 (9)	0.0079 (8)	-0.0005 (7)	-0.0049 (7)
C10	0.0295 (10)	0.0215 (10)	0.0243 (10)	0.0057 (8)	0.0018 (8)	-0.0048 (8)
C11	0.0309 (11)	0.0252 (10)	0.0220 (10)	0.0089 (8)	0.0042 (8)	0.0007 (8)
C12	0.0291 (10)	0.0283 (11)	0.0194 (9)	0.0092 (8)	0.0003 (7)	-0.0060 (8)
C13	0.0302 (10)	0.0216 (10)	0.0241 (10)	0.0047 (8)	-0.0014 (8)	-0.0069 (8)
C14	0.0306 (11)	0.0227 (10)	0.0215 (10)	0.0055 (8)	0.0033 (8)	-0.0019 (8)

Geometric parameters (Å, °)

01—C6	1.348 (2)	C5—C7	1.418 (3)
O1—C2	1.397 (2)	С7—С8	1.491 (3)
O2—C4	1.240 (2)	C8—H8A	0.9800
N1—C6	1.349 (2)	C8—H8B	0.9800
N1—N2	1.394 (2)	C8—H8C	0.9800
N1—C9	1.428 (2)	C9—C10	1.391 (3)
N2—C7	1.326 (2)	C9—C14	1.396 (3)
C1—C2	1.489 (3)	C10—C11	1.396 (3)
C1—H1A	0.9800	C10—H10	0.9500
C1—H1B	0.9800	C11—C12	1.390 (3)
C1—H1C	0.9800	C11—H11	0.9500
C2—C3	1.336 (3)	C12—C13	1.378 (3)
C3—C4	1.460 (3)	C12—H12	0.9500
С3—Н3	0.9500	C13—C14	1.384 (2)
C4—C5	1.447 (3)	C13—H13	0.9500
C5—C6	1.380 (3)	C14—H14	0.9500
C6—O1—C2	114.47 (15)	N2—C7—C8	120.75 (18)

C6—N1—N2	109.07 (14)	С5—С7—С8	128.11 (17)
C6—N1—C9	132.12 (16)	С7—С8—Н8А	109.5
N2—N1—C9	118.81 (14)	C7—C8—H8B	109.5
C7—N2—N1	106.27 (15)	H8A—C8—H8B	109.5
C2—C1—H1A	109.5	C7—C8—H8C	109.5
C2—C1—H1B	109.5	H8A—C8—H8C	109.5
H1A—C1—H1B	109.5	H8B—C8—H8C	109.5
C2—C1—H1C	109.5	C10—C9—C14	120.13 (17)
H1A—C1—H1C	109.5	C10—C9—N1	122.27 (16)
H1B—C1—H1C	109.5	C14—C9—N1	117.61 (17)
C3—C2—O1	122.72 (18)	C9—C10—C11	119.17 (18)
C3—C2—C1	126.60 (18)	С9—С10—Н10	120.4
O1—C2—C1	110.67 (17)	C11—C10—H10	120.4
C2—C3—C4	124.29 (18)	C12—C11—C10	120.53 (19)
С2—С3—Н3	117.9	C12—C11—H11	119.7
С4—С3—Н3	117.9	C10-C11-H11	119.7
O2—C4—C5	124.75 (19)	C13—C12—C11	119.72 (18)
O2—C4—C3	123.43 (18)	C13—C12—H12	120.1
C5—C4—C3	111.82 (17)	C11—C12—H12	120.1
C6—C5—C7	104.07 (16)	C12—C13—C14	120.65 (18)
C6—C5—C4	119.77 (18)	С12—С13—Н13	119.7
C7—C5—C4	136.14 (18)	C14—C13—H13	119.7
N1—C6—O1	123.63 (16)	C13—C14—C9	119.81 (18)
N1—C6—C5	109.45 (17)	C13—C14—H14	120.1
O1—C6—C5	126.92 (17)	C9—C14—H14	120.1
N2—C7—C5	111.14 (17)		
C6 N1 N2 C7	-0.21 (19)	C7 C5 C6 O1	-179 70 (17)
$C_0 = N_1 = N_2 = C_7$	179 19 (15)	$C_{4} = C_{5} = C_{6} = O_{1}$	-1.3(3)
$C_{6} = 0_{1} = C_{2} = C_{3}$	-0.3(3)	$N_1 = N_2 = C_7 = C_5$	0.2(2)
C6-01-C2-C1	178.93(15)	$N_1 = N_2 = C_7 = C_8$	-17894(17)
01-C2-C3-C4	0.7(3)	C6-C5-C7-N2	-0.2(2)
C1 - C2 - C3 - C4	-17848(18)	C4-C5-C7-N2	-1782(2)
$C_2 = C_3 = C_4 = O_2^2$	179 56 (19)	C6-C5-C7-C8	178 93 (19)
$C_2 = C_3 = C_4 = C_5$	-1.1(3)	C4-C5-C7-C8	0.9 (4)
O2—C4—C5—C6	-179.34(18)	C6—N1—C9—C10	-3.8 (3)
C3—C4—C5—C6	1.4 (2)	N2—N1—C9—C10	176.97 (16)
O2—C4—C5—C7	-1.6 (4)	C6—N1—C9—C14	176.32 (19)
C3—C4—C5—C7	179.1 (2)	N2—N1—C9—C14	-2.9(2)
N2—N1—C6—O1	179.85 (15)	C14—C9—C10—C11	0.7 (3)
C9—N1—C6—O1	0.6 (3)	N1—C9—C10—C11	-179.21 (16)
N2—N1—C6—C5	0.1 (2)	C9—C10—C11—C12	-0.1 (3)
C9—N1—C6—C5	-179.18 (17)	C10—C11—C12—C13	-0.4(3)
C2-01-C6-N1	-179.01 (16)	C11—C12—C13—C14	0.2 (3)
C2-01-C6-C5	0.7 (3)	C12—C13—C14—C9	0.4 (3)
C7—C5—C6—N1	0.0 (2)	C10—C9—C14—C13	-0.8 (3)
C4—C5—C6—N1	178.43 (16)	N1-C9-C14-C13	179.05 (15)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A
С10—Н10…О1	0.95	2.33	2.970 (2)	124
C14—H14…N2	0.95	2.39	2.748 (2)	102
C3—H3…O2 ⁱ	0.95	2.47	3.400 (3)	167
C8—H8C····O2 ⁱⁱ	0.98	2.54	3.472 (3)	158

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) -*x*+2, -*y*+1, -*z*.